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Abstract
The phase space description of a system of N point masses confined to a
rectangular box is shown to be equivalent to knowledge of a minimal set of
6N complex Fourier coefficients associated with the discrete distributions of
matter and momentum. The corresponding real-valued truncated Fourier series
yield continuum densities of particle number and momentum at a specific length
scale, εmin. Continuum descriptions at any scale ε > εmin correspond to further
truncation of these series. Attention is drawn to the relevance of the results to
recent investigations of reproducible macroscopic behaviour, at a given pair ε
and � of length time scales, using projection operator methodology.

PACS numbers: 46.05.+b, 05.20.-y

1. Preamble

Projection operator methodology [1], first advocated by Zwanzig [2], provides a formal
procedure for arriving at equations which describe (scale-dependent) macroscopic behaviour
starting from a phase space model of interacting particles [3–5]. There are, however, two
fundamental problems:

F.P.1 Selection of an appropriate projection operator P , and

F.P.2 Justification of an operator identity (which involves combinations of P
with the Liouville operator) central to the establishment of the relevant
master equation.

F.P.2 is a major unproved result in the semigroup theory of operators for a general projection
P on the space of functions of points (‘microstates’) X in phase space [6]. Furthermore, F.P.1
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is of central importance, since all physical interpretations of macroscopic quantities depend ex-
plicitly uponP , as does the physical range of validity of the theory (viaP -related hypotheses of
local equilibrium and dynamic ergodicity). The choice ofP may also bear crucially upon F.P.2.

In [4, 5] the development centred upon selection of a so-called reduction map aε(X)

at scale ε which identifies with each microstate the corresponding ε-scale macrostate. For
particles confined to a rectangular box, aε(X)was defined in [4] to be an ordered list of Fourier
coefficients corresponding to the corpuscular distributions of mass, momentum, and energy
(including interaction and confinement potential energies). The coefficients in question are
only those associated with wavelengths in excess of ε. Of course, for macroscopic phenomena,
ε greatly exceeds nearest-neighbour separations, and aε(X) constitutes only very limited
information about microstate X.

It is here shown that the phase space description of a confined set ofN particles is equivalent
to a set of 6N Fourier coefficients (modulo a realistic and very weak assumption about
corpuscular motions). Further, there is a distinguished scale (smallest wavelength) associated
with these coefficients. The 6N coefficients define two analytic real-valued functions (one
scalar-valued, giving mass distribution, and the other vector-valued, delivering momentum
distribution) which incorporate complete information about the microscopic situation. This
result shows that it might be better, in the context of the overall study outlined above, to work
directly with Fourier coefficients rather than phase space variables. For example, in holding
on to only those coefficients with associated wavelengths greater than ε it is clear just what
information is being neglected. This is not the case with the choice aε(X) of reduction map
discussed above. While there are still central questions about the role of energy considerations
in such a change, there are significant simplifications in the mathematical representation of the
corresponding projection operator. The existing development involves formal use of Dirac delta
distributions, which are defined via piecewise changes of variable of a somewhat complicated
nature. In working directly with Fourier coefficients there is a single change of variable
from phase space as here delineated, after which the projection operator is defined in terms
of multiple integration without any need to appeal to Dirac formalism. Such simplification
may aid progress in F.P.2. (In this context the authors have been collaborating with Wilson
Lamb and John Stewart (Strathclyde) and Aldo Belleni-Morante (Florence), investigating the
relevance of B-bounded semigroups.)

While the foregoing motivates what follows, to workers in continuum mechanics there is
intrinsic interest in displaying scale-dependent analytic functions which represent volumetric
densities of extensive quantities. What is somewhat surprising is that there are such functions
which incorporate complete information about the (classical) microscopic situation.

2. Introduction

Given a system of N point masses confined to the interior of a rectangular box, coefficients
in the (multiple) Fourier series representations of the discrete distributions of corpuscular
locations and momenta can be computed. Adopting the complex formulation of such series
enables 6N complex coefficients to be identified from which complete phase space information
can be recovered. These coefficients correspond to terms with wavelengths no smaller than
εmin = L/N , where L denotes the minimum box dimension. Together with their complex
conjugates, such coefficients yield truncated Fourier series which serve as continuum fields
constituting number and momentum densities at length scale εmin. Such densities at an arbitrary
scale ε correspond to truncation of these series with a wavelength cut-off ε. (Choices ε < εmin

are of no physical interest since in such cases coefficients in terms with wavelengths less
than εmin depend upon the remaining coefficients, and are hence redundant.) Changing from
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phase space variables to the equivalent 6N Fourier coefficients is thus advantageous in its
introduction of a hierarchy of scales. If information about the system is available only at a
scale ε > εmin then there is a natural subdivision of the 6N coefficients into those which
correspond to wavelengths not less than ε and those which do not.

In section 3 a system ofN particles confined to a linear interval is considered. Knowledge
of N coefficients in the complex Fourier series representation of particle locations is shown to
be completely equivalent to knowledge of these locations, whether or not particles coincide.
Regard is paid to the nature of these coefficients, which determine uniquely, and are uniquely
determined by, a polynomial of degree N . Not all such polynomials, and hence coefficients,
correspond to particle distributions. In particular, it is shown how the N complex polynomial
coefficients incorporate at mostN distinct items of real-valued information. A further set ofN
coefficients in the complex Fourier series representation of the momentum distribution is shown
to deliver individual corpuscular momenta whenever no two particles coincide. The foregoing
coefficients and their conjugates delineate truncated real-valued analytic functions which serve
as continuum location and momentum densities: the smallest wavelengths involved are not
less thanL/N , whereL is the interval length. Generalization to three dimensions is effected in
section 4. Knowledge of a set of 3N coefficients in each of the (triple, complex) Fourier series
representations of particle locations and momenta is shown to suffice to recover such locations
and corresponding momenta, provided no two particles have the same x coordinate (where
axes are chosen parallel to box edges). Continuous dependence of locations and momenta
upon time allows this latter restriction to be lifted for so-called regular motions. These are
motions for which, during any finite time interval, the time measure of all instants at which
two or more particles have the same x coordinate is zero. Continuum location and momentum
densities are exhibited which embody all information concerning corpuscular locations and
momenta, and are minimal in this respect. These truncated real-valued triple Fourier series
may be further truncated to yield continuum descriptions at any macroscopic scale. A remark
on the utility of selecting a description with different scales in different directions is made in
the context of a two-phase macroscopic system. Concluding remarks are made in section 5 on
the relevance of the results to studies of the effect of microscopic behaviour upon macroscopic
fields via projection operator methodology.

3. One-dimensional considerations

Consider a set of N point masses confined within a linear interval of length 2l. The location
of each point mass is determined by its signed distance xj (j = 1, 2, . . . , N) from the interval
mid-point, whence −l < xj < l. The particle distribution is

D(x) :=
N∑
j=1

δ(x − xj ). (3.1)

The formal Fourier3 series for D is given by

D(x) ∼
+∞∑

n=−∞
cn einπx/l (3.2)

where

cn := 1

2l

∫ l

−l
D(y)e−inπy/l dy = 1

2l

N∑
j=1

e−inπxj / l . (3.3)

3 For a precise discussion of Fourier series of distributions see [7].
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We now prove that knowledge of c1, c2, . . . , cN determines the locations of the point masses.
More precisely, for −l < xj < l (j = 1, 2, . . . , N) let

β : {x1, x2, . . . , xn} −→ (c1, c2, . . . , cN) (3.4)

denote the map defined by (3.3).

Remark 1. In writing (3.4) we have noted that, in using (3.3) to calculate cn, all permutations
of x1, x2, . . . , xN yield the same value. Accordingly β is a function of the (unordered) set
{x1, x2, . . . , xN }. Said differently, if an ordered N -tuple (c1, c2, . . . , cN) lies in the range of β
then all that can be inferred about any particle distribution which gives rise to this N -tuple is
the set of N locations of the particles. The location of any specific particle is known only to
be one of N possibilities.

Proposition 1. β is invertible on its range.

Proof. Writing

c′
n := 2lcn and aj := e−iπxj / l (3.5)

relations (3.3) become

c′
n =

N∑
j=1

anj . (3.6)

We wish to show that, if c′
1, . . . , c

′
N derive from a set {x1, . . . , xN : −l < xj < l}, via (3.6)

and (3.5)2, then this set is unique. To this end it can be shown that the N symmetric
homogeneous multinomials c′

n in a1, a2, . . . , aN suffice to determine uniquely the symmetric
homogeneous multinomials in a1, a2, . . . , aN which appear as coefficients in the polynomial

PN(z) := (z − a1)(z − a2) · · · (z − aN) (3.7)

≡ zN −�1 z
N−1 + �2 z

N−2 − · · · + (−1)N�N. (3.8)

Here

�1 :=
N∑
j=1

aj �2 :=
N∑

j,k=1
j<k

∑
aj ak

�3 :=
∑ N∑

j,k,l=1
j<k<l

∑
aj ak al · · · �N := a1 a2 . . . aN .

(3.9)

Indeed one has the Newton identities [8] (n = 1, 2, . . . , N)

c′
n −�1 c

′
n−1 + �2 c

′
n−2 − · · · + (−1)n−1 �n−1 c

′
1 + (−1)n n�n = 0 (3.10)

which enable �2,�3, . . . ,�N to be obtained in turn, using (3.10) with n = 2, 3, . . . , N , and
noting �1 = c′

1. Having obtained PN(z) given by (3.8) in this way, the fundamental theorem
of algebra furnishes a unique set of N complex zeros of PN (multiple zeros being counted
according to multiplicity). Accordingly the set {e−iπxj / l}j=1,2,...,N is unique. However, since
we seek only numbers xj in the interval (−l, l), the set {x1, x2, . . . , xN } is thus unique. �

Remark 2. Locations x1, x2, . . . , xN need not be distinct. While coincidence is non-physical
for interactions governed by, for example, Lennard-Jones potentials, such an observation turns
out to be important in subsequent generalization to three dimensions, wherein particles may
not coincide, yet can share one or two coordinates.
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Given any ordered N -tuple (c1, . . . , cN) of complex numbers which lie in the range of β,
consider the truncated Fourier series

DN(x) :=
N∑

n=−N
cn einπx/l . (3.11)

Here it has been noted that, from (3.3),

c0 = N/2l and c−n = c̄n. (3.12)

Remark 3. The functionDN is of interest because it is real-valued and is the minimal truncated
series which incorporates all information concerning the set of particle locations. This follows
from knowledge of c1, c2, . . . , cN requiring that of x1, x2, . . . , xN (via (3.5) and (3.6)), together
with recovery of {x1, x2, . . . , xN } from knowledge of (c1, c2, . . . , cN) (via proposition 1).
All higher-order Fourier coefficients require only the values of a1, a2, . . . , aN , which are
yielded by {x1, x2, . . . , xN } or, equivalently, (c1, c2, . . . , cN). We note that DN involves only
terms with wavelengths 2l, l, 2l/3, . . . , 2l/(N − 1) and 2l/N . Clearly, DN constitutes a
continuum description of particle distribution which is information-equivalent to the actual
(discrete) distribution. Further truncation of the series, say to include terms generated by
c1, c2, . . . , cN ′ (N ′ < N), yields a reduced (that is, ‘coarser’) continuum description involving
only terms with wavelengths 2l, l, . . . , 2l/N ′. Such a series can be regarded as a continuum
description at length scale 2l/N ′. In this sense, the smallest length scale appropriate to
such a continuum description of particle location is thus 2l/N . Such considerations of scale
distinguish the foregoing continuum description from, for example, that obtained in terms of
polynomials which give least-squares fits of discrete information.

The coefficients of a truncated series of form (3.11) which satisfy (3.12) will not in general
lie in the range of β. To see this we observe that the real and imaginary parts of N complex
numbers c1, c2, . . . , cN in general constitute 2N items of independent ‘real’ information,
yet β−1(c1, . . . , cN) yields only N such items if this expression is meaningful (that is, if
(c1, . . . , cN) lies in the range of β). It is thus of interest to characterize those ordered complex
N -tuples which do lie in the range of β. Since knowledge of c1, c2, . . . , cN is equivalent to
that of �1,�2, . . . ,�N (given �1 = c′

1, �2, . . . ,�N , relations (3.10) can be used to obtain
c′

2, c
′
3, . . . , c

′
N in turn), we can alternatively look at restrictions on PN in this respect. Matters

do not appear to be simple. However, a partial answer is provided by:

Proposition 2. If PN(z), given by (3.8) and (3.9), is obtained from a particle distribution
via (3.5)2 then it is necessary that its coefficients satisfy

�k = �N �̄N−k (3.13)

where �0 := 1 and k = 1, 2, . . . , N .

Proof. Given a particle distribution {x1, . . . , xN }, numbers aj (j = 1, 2, . . . , N) and
cn′(n′ = 1, 2, . . . , N) can be calculated from (3.5)2 and (3.6). Identities (3.10) then yield
in turn�1,�2, . . . ,�N which, via (3.8), define PN(z), a polynomial of degreeN whose zeros
a1, . . . , aN all have modulus 1. That is, aj = eiφj and

PN(z) ≡ (z − eiφ1)(z − eiφ2) · · · (z − eiφN ) (3.14)

where −π < φj < π (since φj = −πxj/ l and −l < xj < l). Accordingly

zN PN

(
1

z̄

)
≡ zN

(
1

z
− e−iφ1

) (
1

z
− e−iφ2

)
· · ·

(
1

z
− e−iφN

)

≡ e−i(φ1+φ2+···+φN )(−1)N(z − eiφ1) · · · (z − eiφN ).



6500 A I Murdoch and D Bedeaux

That is,

zN PN

(
1

z̄

)
≡ (−1)N �̄N PN(z). (3.15)

Thus, from (3.8)

1 − �̄1 z + �̄2 z
2 − · · · + (−1)N �̄N z

N ≡ (−1)N �̄N {zN −�1 z
N−1 + · · · + (−1)N �N }.

(3.16)

Equating coefficients of z0, z1, . . . , and zN−1 yields

1 = �̄N �N �̄1 = �̄N �N−1 · · · �̄N−1 = �̄N �1

and hence (3.13) follows on taking conjugates. �

Corollary 2.1. If ρeiα is a zero of polynomial PN defined in (3.8), with coefficients which
satisfy relations (3.13), then ρ−1eiα is also a zero of PN .

Proof. By hypothesis

ρN eiNα −�1 ρ
N−1 ei(N−1)α + · · · + (−1)N−1 �N−1 ρeiα + (−1)N �N = 0. (3.17)

Taking complex conjugates and multiplying by (−1)N �N eiNα ρ−N yields (notice ρ �= 0 since
|�N | = |a1 a2 . . . aN | = 1 �= 0)

(−1)N �N + (−1)N−1 �N �̄1 ρ
−1 eiα + · · · −�N �̄N−1 ρ

−(N−1) ei(N−1)α

+�N �̄N ρ
−N eiNα = 0. (3.18)

Use of relations (3.13) yields the result. �

Corollary 2.2. The N complex zeros of PN in corollary 2.1 are characterized by no more than
N distinct real numbers.

Proof. Suppose PN has zeros a1, a2, . . . , aN . Each zero of modulus 1 has form eiα(α ∈
(−π, π) unique) characterized by the single real number α. The totality of (k say) such zeros
is thus characterized by at most a collection of k distinct real numbers (since there may be
multiple zeros of this type). Select any remaining zero, which must be of the form ρeiα , with
ρ �= 1 and ρ �= 0. Corollary 2.1 delivers ρ−1 eiα as another zero. The zeros still unconsidered
are such that none have moduli ρ or ρ−1, or include at least one of the form ρeiα , ρeiβ , ρ−1 eiα ,
or ρ−1 eiβ (β �= α). The latter case enables us to account for any zero of the form indicated at
the expense of at most one real number (β). In the former case we may repeat the argument
by inspecting any other zero, which must be of the form ρ ′eiγ with ρ ′ �= ρ and ρ ′ �= ρ−1. In
this procedure the number of distinct real numbers elicited clearly cannot exceed N . �

Remark 4. Corollary 2.2 indicates that relations (3.13) suffice to ensure that the zeros of PN
carry at most N distinct items of real-valued information. However, these relations fall short
of characterizing PN as deriving from a particle distribution, as will now be made evident.

Relations (3.13) are necessary if PN is to derive from a particle distribution, but are
not sufficient. Indeed, from definitions (3.9) one has the additional set of restrictions
(k = 1, 2, . . . , N)

|�k| � NCk. (3.19)
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(For example, noting that all zeros of PN must have modulus 1,

|�2| �
N∑

j,k=1
j<k

|aj ak| =
N∑

j,k=1
j<k

|aj | |ak| = NC2).

Furthermore, the totality of restrictions (3.13) and (3.19) do not suffice to ensure the
identification with PN of a particle distribution4. A sufficient condition follows from:

Proposition 3. If ρ1, ρ2, . . . , ρN are N positive numbers with product 1 then their sum is not
less than N , and this sum equals N if and only if ρj = 1 (j = 1, 2, . . . , N).

Proof. Let

SN :=
N∑
j=1

ρj = ρ1 + ρ2 + · · · + ρN−1 +
1

ρ1 ρ2 . . . ρN−1
. (3.20)

Stationary values of SN occur when ∂SN/∂ρj = 0. Thus

1 − 1

ρ2
1 ρ2 . . . ρN−1

= 1 − 1

ρ1 ρ
2
2 . . . ρN−1

= · · · = 1 − 1

ρ1 ρ2 . . . ρ
2
N−1

= 0.

Accordingly ρ2
1ρ2 . . . ρN−1 = ρ1 ρ

2
2 . . . ρN−1 = · · · = ρ1 ρ2 . . . ρ

2
N−1, whence ρ1 = ρ2 =

· · · = ρN−1 and thus ρNj = 1 for each j . Hence ρj = 1, and the only stationary value occurs
when each ρj equals 1. Writing ρj = 1 + εj (j = 1, 2, . . . , N − 1), from (3.20)

SN = N − 1 + ε1 + · · · + εN−1 +
1

(1 + ε1) · · · (1 + εN−1)
.

Noting (1 + ε)−1 = 1 − ε + ε2 − · · · if |ε| < 1,

SN = N +
N−1∑
j=1

ε2
j +

N−1∑
j,k=1
j<k

εj εk + higher order terms

= N +
N∑

j,k=1
j<k

{(εj + εk/2)2 + (
√

3 εk/2)2} + higher order terms.

It follows that the minimum value of SN is N and this occurs only if each ρj = 1. �

Corollary 3.1. If PN satisfies relation (3.13) with k = 0, and the sum of the moduli of its zeros
is N , then PN corresponds to a particle distribution.

Proof. If the zeros have moduli ρ1, . . . , ρN then, since k = 0 in (3.13) yields |�N | =
1, ρ1 ρ2 . . . ρN = 1. If, in addition,

∑N
j=1 ρj = N then proposition 3 implies all zeros have

modulus 1, and hence PN corresponds to a particle distribution. �

Remark 5. While the foregoing restrictions on a polynomial PN of degree N concerning the
product and sum of the moduli of its zeros are both necessary and sufficient to ensure it may
be identified with a particle distribution, the restriction on the sum is not readily identified
by inspection of its coefficients. Indeed, given the above two restrictions, the remaining
restrictions (3.13) for k �= 0 may be deduced, together with relations (3.19).

4 Consider, for example,P3(z) := (z−ρeiθ )(z− 1
ρ

eiθ )(z−eiφ). Ifρ = 4/5, cos(φ−θ) = −4/5 and sin(φ−θ) = 3/5,
then restrictions (3.13) and (3.19) hold with N = 3.
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Having discussed particle locations we now consider their physical attributes. Suppose
that fj denotes the value of a physical quantity associated with that particle located at xj (for
example, its mass, momentum or kinetic energy). The corresponding discrete distribution is

F(x) :=
N∑
j=1

fj δ(x − xj ). (3.21)

The formal Fourier series for F is given by

F(x) ∼
∞∑

n=−∞
φn einπx/l (3.22)

where

φn := 1

2l

N∑
j=1

fj a
n
j . (3.23)

Proposition 4. If no two point masses coincide then knowledge of φ1, . . . , φN is equivalent
to knowing that the particle whose location xj is given by aj has quantity value fj (j =
1, 2, . . . , N).

Proof. Given a1, . . . , aN , relations (3.23) with n = 1, 2, . . . , N constitute a set of N

simultaneous linear equations for φ′
1, . . . , φ

′
N , where

φ′
n := 2lφn. (3.24)

Indeed,

φ′
n =

N∑
j=1

Anj fj (3.25)

where

Anj := anj . (3.26)

Relations (3.25) are invertible if and only if det[Anj ] �= 0. However

det[Anj ] ≡ (−1)N(N−1)/2a1 a2 · · · aN
N∏

p,q=1
p<q

(ap − aq). (3.27)

Since |aj | = 1, invertibility is possible unless one or more factors (ap−aq)vanish; equivalently,
unless at least one pair of particles coincide. �

The main conclusion of this section follows from remark 3 and proposition 4, namely:

Theorem A. If a set of N point masses are confined to the linear interval (−l, l), and interact
in such a way that no two coincide, then the appropriate phase space description is equivalent
to the set of 2N complex-valued Fourier coefficients (c1, c2, . . . , cN , φ1, φ2, . . . , φN), where
cn is defined by (3.3) and φn by (3.23) with fj = pj (the momentum of that particle located at
xj ).

Corollary A.1. Equivalent to the phase space description of point masses, interacting as
in theorem A, are the two real-valued analytic functions DN and MN , where DN is defined
by (3.11) and (3.3), and (via (3.23) with fj = pj )

MN(x) :=
N∑

n=−N
φn einπx/l . (3.28)
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Remark 6. From (3.11) c0 = N/2l. Further, from (3.23)

φ0 =
N∑
n=1

pj/2l =
N∑
n=1

N∑
k=1

(A−1)jk φk (3.29)

where A denotes the matrix whose elements are given by (3.26). Accordingly c0 and φ0 are
not independent variables. Writing coefficients in polar form as

cn = rn eiθn φn = ρn eiψn (3.30)

(n = 1, 2, . . . , N) and noting c−n = c̄n, φ−n = φ̄n, we have

DN(x) = N

2l
+ 2

N∑
n=1

rn cos
{nπx

l
+ θn

}
(3.31)

and

MN(x) = φ0 + 2
N∑
n=1

ρn cos
{nπx

l
+ ψn

}
(3.32)

with (from (3.29))

φ0 =
N∑
j=1

N∑
k=1

(A−1)jk ρk eiψk . (3.33)

Recalling remark 3, DN together with MN constitutes a continuum description of particle
locations and momenta which is minimal, in the sense of corresponding to a pair of truncated
Fourier series which incorporate all corpuscular information, and such that any further
truncation would result in loss of information. Truncation with last terms corresponding
to n = N ′ < N yields a (‘coarser’) description at scale 2l/N ′.

4. Three-dimensional considerations

Here we generalize the results of section 3 to three dimensions. The problem is thus to consider
N point masses confined to the interior of a rectangular box (of dimensions 2l1 × 2l2 × 2l3,
say) and to select a minimal set of Fourier coefficients associated with corpuscular locations
and momenta which incorporate sufficient information to be able to recover these locations
and momenta. Choosing Cartesian coordinates with origin at the centre of the box and axes
parallel to its edges, let (xj , yj , zj ) denote the locations of the particles (j = 1, 2, . . . , N).
The particle distribution

D(x, y, z) :=
N∑
j=1

δ(x − xj ) δ(y − yj ) δ(z − zj ) (4.1)

has formal Fourier series

D(x, y, z) ∼
∑ ∞∑
k1,k2,k3=−∞

∑
c(k)eik · r′

(4.2)

where

c(k) := 1

8l1l2l3

∫ l3

−l3

∫ l2

−l2

∫ l1

−l1
D(x, y, z)e−ik · r′

dx dy dz (4.3)

with

r′ :=
(
πx

l1
,
πy

l2
,
πz

l3

)
and k := (k1, k2, k3) (4.4)
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(k1, k2, k3 integers).
Thus

c′(k) := 8l1l2l3 c(k) =
N∑
j=1

α
k1
j β

k2
j γ

k3
j (4.5)

where

αj := e−iπxj / l1 βj := e−iπyj / l2 γj := e−iπzj / l3 . (4.6)

Consider {c′(n, 0, 0) : 1 � n � N}. From (4.5)

c′(n, 0, 0) =
N∑
j=1

αnj . (4.7)

This is precisely the situation addressed by proposition 1: see (3.6). Thus, given the set
{c′(n, 0, 0)} of N Fourier coefficients, there exists a unique set {α1, . . . , αN } of complex
numbers which satisfy (4.7). Accordingly, since these derive from a particle distribution,
|αj | = 1 by (4.6)1, and there exists a unique xj ε(−l1, l1) related to αj by (4.6)1.

Remark 7. The set {x1, . . . , xN } may involve repetitions. Even if particle interactions exclude
coincidence, pairs of distinct particles are to be expected occasionally (and instantaneously)
to share the same x coordinate as time evolves.

Remark 8. Naively, one might expect to consider the sets {c′(0, n, 0)} and {c′(0, 0, n)},
(n = 1, 2, . . . , N), in order to locate all corpuscular locations. However, such sets yield only
sets {y1, . . . , yN) and {z1, . . . , zN } of y and z coordinates, with no indication of which z goes
with which y (and which x). Said differently, knowledge of sets {c′(n, 0, 0)}, {c′(0, n, 0)} and
{c′(0, 0, n)} yields a set ofN3 possible corpuscular locations (x, y, z), where x ∈ {x1, . . . , xN },
y ∈ {y1, . . . , yN } and z ∈ {z1, . . . , zN }.

Consider {c′(n, 1, 0) : 1 � n � N}. From (4.5)

c′(n, 1, 0) =
N∑
j=1

αnj βj =
N∑
j=1

Anj βj (4.8)

whereAnj is given by (3.26) with aj = αj (with l replaced by l1: cf (3.5)1 and (4.6)1). We may
thus invoke proposition 4 (here φ′

n = c′(n, 1, 0)) to deduce that there exists a unique solution
β1, . . . , βN to the system (4.8) ofN simultaneous linear equations, provided thatα1, . . . , αN are
all different. Similarly, under this latter condition, consideration of {c′(n, 0, 1) : 1 � n � N}
leads to the system

c′(n, 0, 1) =
N∑
j=1

Anj γj (4.9)

having a unique solution γ1, . . . , γN .

Remark 9. The foregoing shows that, provided the x coordinates of the N particles are all
different (equivalent toα1, . . . , αN being all different), knowledge of the coefficients c′(n, 1, 0)
and c′(n, 0, 1), where 1 � n � N , enables a unique ordered pair (βj , γj ) to be associated with
αj for each j = 1, . . . , N . Indeed we have established

Proposition 5. If N particles, confined to a rectangular box, are distributed so that no two lie
on any plane parallel to a box face, then (choosing coordinates so that x is constant on such
a face) knowledge of the 3N Fourier coefficients c′(n, 0, 0), c′(n, 1, 0) and c′(n, 0, 1), where
n = 1, . . . , N , suffices to determine the locations of all particles.
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Now, suppose that fj denotes a scalar physical quantity associated with that particle
located at (xj , yj , zj ). The corresponding distribution (cf (3.21)) is

F(x, y, z) :=
N∑
j=1

fj δ(x − xj ) δ(y − yj ) δ(z − zj ). (4.10)

Distribution F has formal Fourier series (cf (3.22) and (3.23))

F(x, y, z) ∼ 1

8 l1 l2 l3

∑ ∞∑
k1,k2,k3=−∞

∑
φ′(k)eik · r′

(4.11)

where

φ′(k) :=
N∑
j=1

fj α
k1
j β

k2
j γ

k3
j (4.12)

and we have used the notation of (4.4) and (4.6). Knowledge of φ′(n, 0, 0) for n = 1, . . . , N
enables, modulo the hypothesis of proposition 5, unique values f1, . . . , fN to be determined
via invertibility of [Anj ]. It follows that knowledge of the 3N Fourier coefficients associated
with the momentum components of the N particles (obtained in turn by choosing fj first
equal to the x component of the momentum of that particle located at (xj , yj , zj ), then equal
to the y momentum component, and finally the z momentum component) is equivalent to
knowledge of the corpuscular momenta. Suppose these momentum coefficients are denoted by
φ′
x(n, 0, 0), φ′

n(n, 0, 0) andφ′
z(n, 0, 0), respectively (n = 1, . . . , N). We have thus established

the three-dimensional analogue of theorem A, namely:

Theorem B. The phase space description of a set of N point masses confined to a rectangular
box is equivalent to the set of 6N Fourier coefficients (n = 1, . . . , N) c′(n, 0, 0), c′(n, 1, 0),
c′(n, 0, 1), φ′

x(n, 0, 0), φ′
y(n, 0, 0) and φ′

z(n, 0, 0) whenever no two particles share a common
x coordinate.

In motions of particles confined to a box there will naturally be many instants at which
particle pairs lie on a plane parallel to one specific box face. However, in any finite time
interval it may be highly unlikely that such a coincidence will be other than instantaneous.
Said differently, it may be highly unlikely that such a coincidence will persist over a time
interval (in which case the relevant particles would share a common velocity component over
this interval). This motivates defining particle motions as regular if

R.M.1: particle locations are smooth functions of time, and
R.M.2: over any finite time interval the (Lebesgue) measure of all instants at which two

or more particles lie on a plane parallel to a specific face is zero.
Immediately we have:

Corollary B.1. In regular motions the conclusion of theorem B holds almost always.

Indeed, we can say more:

Corollary B.2. Knowledge of the Fourier coefficients in theorem B suffices, for regular motions,
to recover the phase space description at all times.

Proof. If τ is an instant in a regular motion at which theorem B is inapplicable then we
can, via R.M.2, consider a sequence of instants {tn}∞n=1 which converges to τ and for each
of which theorem B is appropriate. Consider the sequence {βj (tn)} delivered by inversion of
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relations (4.8). Since |βj | = 1 at any time, set {βj (tn)} is bounded and thus has a limit point,
β̂ say, with |β̂| = 1 (via the Bolzano–Weierstrass theorem and continuity of the modulus
function). Since βj is an analytic function of location, from R.M.1 βj is a smooth (and
hence, in particular, continuous) function of time and thus β̂ is unique, and to be regarded as
βj (τ ). Of course, this yields yj (τ ) via (4.6)2. Identical reasoning establishes zj (τ ), and a
similar argument delivers momentum components at instant τ (invoking continuity of such,
guaranteed by R.M.1). �

Remark 9. Corollary B.2 continues to hold if R.M.2 is relaxed to:
R.M.2′: over any finite time interval, the set of all instants at which no particle pairs lie

on a plane parallel to a specific face is dense in this interval.

Remark 10. While most physical interest might relate to particle interactions which preclude
instantaneous coincidence, the foregoing holds for such coincidence: the only restriction is
that motions be regular.

The analogue of corollary A.1. is:

Corollary B.3. The phase space description of a set of N point masses, confined to a regular
box and undergoing regular motions, is equivalent to the two real-valued analytic functions:

DN(x) :=
∑ N∑
k1,k2,k3=−N

∑
c(k)eik · r′

(4.13)

and

MN(x) :=
∑ N∑
k1,k2,k3=−N

∑
φ′(k)eik · r′

. (4.14)

Here c(k) is given by (4.5) and (4.6), while

φ′(k) :=
N∑
j=1

pj α
k1
j β

k2
j γ

k3
j (4.15)

where pj is the momentum of a particle located at (xj , yj , zj ).

Remark 11. Recalling remark 6, DN together with MN furnishes a continuum description
of particle locations and momenta which is minimal. The smallest wavelength involved is
εmin := min {2l1/N, 2l2/N, 2l3/N}. Further truncation delivers a coarser description. A
continuum description at scale ε > εmin corresponds to truncation of (4.13) and (4.14) in
which N is replaced by the integral part N ′ of the smallest of 2l1/ε, 2l2/ε and 2l3/ε.

Remark 12. It may be desirable to truncate (4.13) and (4.14) at different wavelengths in
different directions. For example, particles confined to a box by separation-dependent wall
potentials, and interacting via Lennard-Jones potentials, may, under gravity parallel to a box
edge, give rise to a liquid–vapour system. It would then be useful to adopt a fine scale in
the gravitational direction (in order to ‘resolve’ the interfacial region) but use a much coarser
description in ‘lateral’ directions.
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5. Concluding remarks

The projection operator method is based upon a change of phase space variables to an equivalent
set of variables which is the union of two sets, one of which is considered to furnish macroscopic
information, and the other sub-macroscopic detail, about the system. If X is an element
(‘microstate’) of phase space P, let S = Ŝ(X) and F = F̂ (X) denote the aforementioned
macroscopic and sub-macroscopic variables, respectively. The general form of projection
operator (see [5], section 3) is given, for any function f of microstate, by P : f → Pf , where

(Pf )(X) :=
∫

P

f (Y )w(Y ) δ(Ŝ(Y )− Ŝ(X)) dY/
∫

P

w(Y ) δ(Ŝ(Y )− Ŝ(X)) dY. (5.1)

Here w is a weighting function (usually an equilibrium probability density) and the ‘δ’
symbolism indicates integration is to be effected only over microstates which yield the same
macrostate as X, namely Ŝ(X). Thus (Pf )(X) is an ensemble average, where the ensemble
consists of the set of those microstates which correspond to macrostate Ŝ(X), furnished
with probability density w. The time evolution of f in any microprocess is delivered in
terms of the action of the Liouville operator upon f , and an operator identity yields the
evolution of Pf . The latter evolution has identifiable reversible and irreversible contributions,
and leads (with f = ρ, the probability density function on P) to the appropriate master
equation.

The foregoing is formal in the sense that any variable change from P allows the new
variables to be divided into two arbitrary complementary subsets, and the projection operator
procedure implemented. However, the physical content of the resulting master equation
depends crucially upon the selection of macroscopic variables. In this work the change to
certain Fourier coefficients as variables lends itself in a natural way to such selection via
length scale considerations5. Specifically, in order to study macroscopic behaviour at length
scale ε, the relevant variables are those Fourier coefficients which correspond to wavelengths
not less than ε.

In recent work [4, 5] a modified version of the procedure indicated above was adopted.
Addressing reproducible macroscopic behaviour at scales ε and � of length and time, the
variable change involves local replacement of a certain number of phase space variables by
coefficients in the Fourier series representations of corpuscular mass, momentum and energy
distributions. Such coefficients correspond to a wavelength cut-off ε. Hypotheses of local
equilibrium at scales ε,� (equivalent to w = 1 in (5.1)) and dynamic ergodicity (relating
ensemble averages delivered by the projection operator to ε,� local corpuscular averages)
provide the link with observations made at these scales.
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